Nuclear and Particle Physics

Nuclear and Particle Physics

Format:
E-Book (pdf)
EAN:
9781119344629
Untertitel:
An Introduction
Genre:
Physik, Astronomie
Autor:
Brian R. Martin, Graham Shaw
Herausgeber:
Wiley
Anzahl Seiten:
528
Erscheinungsdatum:
08.02.2019

Updated and expanded edition of this well-known Physics textbook provides an excellent Undergraduate introduction to the field

This new edition of Nuclear and Particle Physics continues the standards established by its predecessors, offering a comprehensive and highly readable overview of both the theoretical and experimental areas of these fields. The updated and expanded text covers a very wide range of topics in particle and nuclear physics, with an emphasis on the phenomenological approach to understanding experimental data. It is one of the few publications currently available that gives equal treatment to both fields, while remaining accessible to undergraduates.

Early chapters cover basic concepts of nuclear and particle physics, before describing their respective phenomenologies and experimental methods. Later chapters interpret data through models and theories, such as the standard model of particle physics, and the liquid drop and shell models of nuclear physics, and also discuss many applications of both fields. The concluding two chapters deal with practical applications and outstanding issues, including extensions to the standard model, implications for particle astrophysics, improvements in medical imaging, and prospects for power production. There are a number of useful appendices. Other notable features include:

* New or expanded coverage of developments in relevant fields, such as the discovery of the Higgs boson, recent results in neutrino physics, research to test theories beyond the standard model (such as supersymmetry), and important technical advances, such as Penning traps used for high-precision measurements of nuclear masses.

* Practice problems at the end of chapters (excluding the last chapter) with solutions to selected problems provided in an appendix, as well as an extensive list of references for further reading.

* Companion website with solutions (odd-numbered problems for students, all problems for instructors), PowerPoint lecture slides, and other resources.

As with previous editions, the balanced coverage and additional resources provided, makes Nuclear and Particle Physics an excellent foundation for advanced undergraduate courses, or a valuable general reference text for early graduate studies.

Autorentext
BRIAN R. MARTIN and GRAHAM SHAW have researched and taught for many years in the Physics and Astronomy departments at University College London and the University of Manchester, respectively. Prior to that they have held positions at various institutes, including Brookhaven National Laboratory and Niels Bohr Institute (Martin), Columbia University and Rutherford Laboratory (Shaw). They have previously collaborated on other successful textbooks, including Particle Physics (4th edn. 2017) and Mathematics for Physicists (2015), both published by Wiley. Brian has also published books on statistics and a Beginner's Guide to Particle Physics, while Graham is the co-author with Franz Mandl of the well-known postgraduate text, Quantum Field Theory (2nd. edn. 2010), also published by Wiley.

Inhalt
Preface xi Notes xiii 1 Basic concepts 1 1.1 History 1 1.1.1 The origins of nuclear physics 1 1.1.2 The emergence of particle physics: hadrons and quarks 6 1.1.3 The standard model of particle physics 9 1.2 Relativity and antiparticles 11 1.3 Space-time symmetries and conservation laws 13 1.3.1 Parity 14 1.3.2 Charge conjugation 16 1.3.3 Time reversal 17 1.4 Interactions and Feynman diagrams 20 1.4.1 Interactions 20 1.4.2 Feynman diagrams 21 1.5 Particle exchange: forces and potentials 24 1.5.1 Range of forces 24 1.5.2 The Yukawa potential 25 1.6 Observable quantities: cross-sections and decay rates 26 1.6.1 Amplitudes 27 1.6.2 Cross-sections 29 1.6.3 The basic scattering formulas 31 1.6.4 Unstable states 33 1.7 Units 36 Problems 1 37 2 Nuclear phenomenology 41 2.1 Mass spectroscopy 43 2.1.1 Deflection spectrometers 43 2.1.2 Kinematic analysis 45 2.1.3 Penning trap measurements 46 2.2 Nuclear shapes and sizes 51 2.2.1 Charge distribution 52 2.2.2 Matter distribution 56 2.3 Semi-empirical mass formula: the liquid drop model 59 2.3.1 Binding energies 59 2.3.2 Semi-empirical mass formula 60 2.4 Nuclear instability 64 2.5 Decay chains 67 2.6 decay phenomenology 69 2.6.1 Odd-mass nuclei 70 2.6.2 Even-mass nuclei 71 2.7 Fission 72 2.8 decays 76 2.9 Nuclear reactions 76 Problems 2 81 3 Particle phenomenology 83 3.1 Leptons 83 3.1.1 Lepton multiplets and lepton numbers 83 3.1.2 Universal lepton interactions; the number of neutrinos 86 3.1.3 Neutrinos 88 3.1.4 Neutrino mixing and oscillations 90 3.1.5 Oscillation experiments 93 3.1.6 Neutrino masses and mixing angles 101 3.1.7 Lepton numbers revisited 103 3.2 Quarks 104 3.2.1 Evidence for quarks 104 3.2.2 Quark generations and quark numbers 106 3.3 Hadrons 109 3.3.1 Flavour independence and charge multiplets 109 3.3.2 The simple quark model 113 3.3.3 Hadron decays and lifetimes 117 3.3.4 Hadron magnetic moments and masses 119 3.3.5 Heavy quarkonia 126 3.3.6 Allowed and exotic quantum numbers 133 Problems 3 135 4 Experimental methods 139 4.1 Overview 139 4.2 Accelerators and beams 142 4.2.1 DC accelerators 142 4.2.2 AC accelerators 143 4.2.3 Neutral and unstable particle beams 150 4.3 Particle interactions with matter 152 4.3.1 Short-range interactions with nuclei 153 4.3.2 Ionisation energy losses 154 4.3.3 Radiation energy losses 157 4.3.4 Interactions of photons in matter 158 4.3.5 Ranges and interaction lengths 159 4.4 Particle detectors 160 4.4.1 Gaseous ionisation detectors 162 4.4.2 Scintillation counters 167 4.4.3 Semiconductor detectors 169 4.4.4 Cerenkov counters and transition radiation 170 4.4.5 Calorimeters 173 4.5 Detector Systems 176 Problems 4 182 5 Quark dynamics: the strong interaction 185 5.1 Colour 185 5.2 Quantum chromodynamics (QCD) 187 5.2.1 The strong coupling constant 190 5.2.2 Screening, antiscreening and asymptotic freedom 193 5.3 New forms of matter 194 5.3.1 Exotic hadrons 194 5.3.2 The quarkgluon plasma 201 5.4 Jets and gluons 204 5.4.1 Colour counting 205 5.5 Deep inelastic scattering and nucleon structure 207...


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 2 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.


Feedback