Plasmaphysik

Plasmaphysik

Einband:
Kartonierter Einband
EAN:
9783642637216
Untertitel:
Eine Einführung
Genre:
Theoretische Physik
Autor:
Wilhelm H. Kegel
Herausgeber:
Springer Berlin Heidelberg
Auflage:
Softcover reprint of the original 1st ed. 1998
Anzahl Seiten:
321
Erscheinungsdatum:
05.11.2012
ISBN:
978-3-642-63721-6

Plasmaphysik führt systematisch in die Methoden zur theoretischen Beschreibung physikalischer Prozesse in ionisierten Gasen ein. Vom mikroskopischen Teilchenbild ausgehend werden die Gleichungen sowohl für eine mikroskopische als auch für eine makroskopische Beschreibung eines Plasmas abgeleitet. Im Mittelpunkt steht die Frage, welche Näherung welcher Fragestellung angemessen ist. Ausführlich werden Gleichgewichtskonfigurationen, Instabilitäten und Wellen in den verschiedenen Näherungen behandelt. Beispiele und Laborexperimente sorgen für Anschaulichkeit.

Inhalt
1. Einleitung.- 1.1 Plasma als vierter Zustand der Materie.- 1.2 Typische plasmaphysikalische Problemstellungen.- 1.2.1 Statische Gleichgewichte.- 1.2.2 Stationäre Gleichgewichte.- 1.2.3 Stabilität.- 1.2.4 Ausbreitung von Wellen und Strahlungsprozesse.- 1.2.5 Beschleunigungsprozesse.- 1.3 Beispiele für praktische Anwendungen der Plasmaphysik.- 1.3.1 Die kontrollierte Kernfusion.- 1.3.2 Beschleuniger.- 1.3.3 Ionenraketen.- 1.3.4 Gasentladungsröhren.- 1.4 Verallgemeinerungen des Plasmabegriffs.- 1.5 Einige allgemeine Bemerkungen zum vorliegenden Text.- 2. Einzelteilchenbewegung.- 2.1 Grundgleichungen.- 2.2 Exakte Lösungen der Bewegungsgleichung.- 2.2.1 Bewegung geladener Teilchen in einem homogenen Magnetfeld.- 2.2.2 Bewegung geladener Teilchen im homogenen elektrischen und magnetischen Feld(E?H).- 2.2.3 Bewegung geladener Teilchen im homogenen elektrischen und magnetischen Feld(E?H).- 2.2.4 Bewegung eines geladenen Teilchens in einer ebenen elektromagnetischen Welle im Vakuum.- 2.2.5 Bewegung eines geladenen Teilchens in einer ebenen elektromagnetischen Welle mit überlagertem homogenen Magnetfeld.- 2.3 Bewegung geladener Teilchen in stationären, rotationssymmetrischen Magnetfeldern.- 2.3.1 Allgemeine Relationen.- 2.3.2 Bewegung geladener Teilchen im Dipolfeld der Erde.- 2.4 Bewegung geladener Teilchen in rotierenden Feldern.- 2.4.1 Ein Erhaltungssatz.- 2.4.2 Bewegung geladener Teilchen im Feld eines rotierenden Dipols.- 2.5 Die Alfvénsche Näherung.- 2.5.1 Die Bewegungsgleichung für das Führungszentrum.- 2.5.2 Das magnetische Moment.- 2.5.3 Adiabatische Invarianten.- 2.5.4 Betatronbeschleunigung.- 2.5.5 Bewegung geladener Teilchen in einem inhomogenen, statischen Magnetfeld(H?gradH).- 2.5.6 Magnetische Spiegel.- 2.5.7 Bewegung geladener Teilchen in einem Dipolfeld (Strahlungsgürtel der Erde).- 2.5.8 Vergleich der Alfvénschen Näherung mit exakten Rechnungen.- 2.6 Strahlungsverluste.- 3. Mikroskopische Plasmabeschreibung.- 3.1 Ionisation.- 3.1.1 Die Saha-Gleichung.- 3.1.2 Das Abschneiden der Zustandssumme und die Erniedrigung der Ionisationsenergie.- 3.1.3 Abweichungen vom lokalen thermodynamischen Gleichgewicht.- 3.2 Plasmaparameter.- 3.2.1 Die Debye-Länge.- 3.2.2 Die Plasmafrequenz.- 3.2.3 Die Stoßfrequenz bei Coulomb-Stößen.- 3.3 Kinetische Gleichungen.- 3.3.1 Die Liouville-Gleichung.- 3.3.2 Die Hierarchiegleichungen.- 3.3.3 Die Wlassow-Gleichung.- 3.3.4 Die Wlassow-Gleichung in krummlinigen Koordinaten..- 3.3.5 Die relativistische Wlassow-Gleichung.- 3.3.6 Näherungen für den Stoßterm.- 3.3.7 Die Klimontovich-Gleichung.- 3.4 Gleichgewichtsverteilungen.- 3.4.1 Homogenität und Isotropie.- 3.4.2 Inhomogene Gleichgewichte in ebener Geometrie.- 3.4.3 Inhomogene Gleichgewichte in Zylindergeometrie mitH = ezH(r).- 3.4.4 Inhomogene Gleichgewichte in Zylindergeometrie mitH=e?H(r).- 3.5 Wellen und Instabilitäten.- 3.5.1 Die Dispersionsrelation für elektrostatische Wellen.- 3.5.2 Das Landau-Integral.- 3.5.3 Landau-Dämpfung.- 3.5.4 Plasma-Echos.- 3.5.5 Ein Kriterium für das Auftreten von elektrostatischen Instabilitäten.- 3.5.6 Elektrostatische Wellen in einem Mehrkomponentenplasma.- 3.6 Lichtstreuung in einem Plasma.- 3.6.1 Streutheorie.- 3.6.2 Thermische Dichtefluktuationen in einem Zweikomponentenplasma.- 3.6.3 Numerische Beispiele.- 3.6.4 Thermische Dichtefluktuationen in einem Mehrkomponentenplasma.- 3.6.5 Gültigkeitsbereiche.- 3.7 Einfluß der Stöße.- 3.7.1 Der Stoßterm für Maxwell-Verteilungen.- 3.7.2 Zeitskalen.- 3.7.3 Der elektrische Widerstand im magnetfeldfreien Fall.- 3.7.4 Runaway-Elektronen 180 3.7.5 Der elektrische Widerstand senkrecht zum Magnetfeld.- 3.7.6 Klassische Diffusion senkrecht zum Magnetfeld.- 3.7.7 Anomaler Widerstand und anomale Diffusion.- 3.7.8 Der Gyrorelaxationseffekt.- 4. Makroskopische Plasmabeschreibung.- 4.1 Ableitung ma.kroskopischer Gleichungen.- 4.1.1 Momentengleichungen.- 4.1.2 Das verallgemeinerte Ohmsche Gesetz.- 4.2 Magnetohydrodynamik.- 4.2.1 Die Maxwellschen Gleichungen in der MHD-Näherung und das Grundgleichungssystem.- 4.2.2 Eingefrorene Feldlinien.- 4.2.3 Magnetohydrostatik.- 4.2.4 Stationäre Konfigurationen.- 4.2.5 Magnetohydrodynamische Wellen.- 4.2.6 MHD-Instabilitäten.- 4.3 Nicht-ideale Magnetohydrodynamik.- 4.3.1 Die Dissipationsterme.- 4.3.2 Gedämpfte Alfvén-Wellen.- 4.3.3 Widerstandsinstabilitäten.- 4.4 Zweiflüssigkeitstheorie.- 4.4.1 Gleichgewichtskonfigurationen.- 4.4.2 Die Ausbreitung elektromagnetischer Wellen in einem Plasma.- Anhang A. Magnetfelder und Feldlinien.- A.1 Feldlinien als Raumkurven.- A.1.1 Tangentenvektor und Bogenlänge.- A.1.2 Die Krümmung.- A.1.3 Die Torsion.- A.1.4 Das Frenetsche Dreibein und die Frenetschen Formeln.- A.2 Berechnung von Feldlinien.- A.3 Beispiele.- A.4 Ableitung der Gleichung (4.2.175).- Literatur.


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 6 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.


Feedback