Automatisches Beweisen mittels Gröbnerbasen in der Geometrie

Automatisches Beweisen mittels Gröbnerbasen in der Geometrie

Einband:
Kartonierter Einband
EAN:
9783639840971
Untertitel:
Dualitt regelmiger Krper
Genre:
Informatik
Autor:
Daniel Heck
Herausgeber:
AV Akademikerverlag
Anzahl Seiten:
412
Erscheinungsdatum:
30.04.2015
ISBN:
978-3-639-84097-1

In dieser Arbeit wird durch das automatische Beweisen mittels Gröbnerbasen die Dualität der dreidimensionalen regelmäßigen Polyedern sowie die Dualität von ausgewählten vierdimensonalen regelmäßigen Polytopen nachgewiesen. Bei den dreidimensionalen regelmäßigen Polyeder handelt es sich um die platonischen Körper. Diese sind der Tetra-, Hexa-, Okta-, Dodeka- und Ikosaeder. Der Hexaeder ist der bekannte Würfel. Er ist dual zum Oktaeder. Das bedeutet, dass die Flächenmittelpunkte aller Flächen des Hexaeders einen Oktaeder bilden. Umgekehrt gilt bei den regelmäßigen Körpern die gleiche Beziehung. Diese Beziehung ist in der Mathematik schon lange bekannt und kann geometrisch leicht erklärt werden. Wie im dreidimensionalen Raum gibt es auch in höherdimensionalen Räumen regelmäßige Polytope. Diese besitzen ebenfalls duale Beziehungen untereinander. Die vierte Dimension nimmt hierbei eine Sonderstellung ein, da es nur dort ein regelmäßiges Polytop, das 24-Zell, gibt, dass in keiner anderen Dimension ein Pendant besitzt. Ab der fünften Dimension existieren nur noch die Pendants zum Würfel, Oktaeder und Tetraeder.

Autorentext
Daniel Heck, Jahrgang 1989, studierte an der Universität Koblenz-Landau Campus Koblenz von 2009 - 2014 lehramtsbezogen Mathematik und Informatik und beendete sein Studium mit dem Master of Education.

Klappentext
In dieser Arbeit wird durch das automatische Beweisen mittels Gröbnerbasen die Dualität der dreidimensionalen regelmäßigen Polyedern sowie die Dualität von ausgewählten vierdimensonalen regelmäßigen Polytopen nachgewiesen. Bei den dreidimensionalen regelmäßigen Polyeder handelt es sich um die platonischen Körper. Diese sind der Tetra-, Hexa-, Okta-, Dodeka- und Ikosaeder. Der Hexaeder ist der bekannte Würfel. Er ist dual zum Oktaeder. Das bedeutet, dass die Flächenmittelpunkte aller Flächen des Hexaeders einen Oktaeder bilden. Umgekehrt gilt bei den regelmäßigen Körpern die gleiche Beziehung. Diese Beziehung ist in der Mathematik schon lange bekannt und kann geometrisch leicht erklärt werden. Wie im dreidimensionalen Raum gibt es auch in höherdimensionalen Räumen regelmäßige Polytope. Diese besitzen ebenfalls duale Beziehungen untereinander. Die vierte Dimension nimmt hierbei eine Sonderstellung ein, da es nur dort ein regelmäßiges Polytop, das 24-Zell, gibt, dass in keiner anderen Dimension ein Pendant besitzt. Ab der fünften Dimension existieren nur noch die Pendants zum Würfel, Oktaeder und Tetraeder.


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 6 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.


Feedback