Maschinelle Lernmethoden für Klassifizierungsprobleme

Maschinelle Lernmethoden für Klassifizierungsprobleme

Einband:
Kartonierter Einband
EAN:
9783658251369
Genre:
Weitere Mathematik-Bücher
Autor:
Sarah Schönbrodt
Herausgeber:
Springer Fachmedien Wiesbaden
Erscheinungsdatum:
25.01.2019

Sarah Schönbrodt gibt Einblick in die mathematischen Hintergründe der Support Vector Machine und einer auf der Singulärwertzerlegung basierenden Klassifizierungsmethode. Die Autorin stellt fest, dass sich hinter beiden Methoden elementar-mathematische und anschauliche Konzepte verbergen, die großteils mit Schulmathematik zugänglich sind. Schülerinnen und Schülern wird aufgrund der großen Anwendungsbreite für verschiedene lebensnahe Fragestellungen ein verständlicher Zugang zu Problemlösestrategien des aktuell höchst relevanten maschinellen Lernens gegeben. Perspektiven für die methodisch-didaktische Gestaltung eines Workshops zur mathematischen Modellierung werden aufgezeigt.

Autorentext
Nach erfolgreichem Abschluss ihres Masterstudiums promoviert Sarah Schönbrodt im Bereich der Entwicklung von authentischen Modellierungsaufgaben für Schülerinnen und Schüler an der RWTH Aachen. Sie ist zugleich in der Organisation und Gestaltung des Schülerlabors CAMMP für Mathematische Modellierung tätig.

Inhalt
Klassifizierung auf Basis maschineller Lernalgorithmen.- Mathematische Hintergrunde zweier maschineller Lernmethoden.- Anwendung zweier maschineller Lernmethoden zur Bildklassifizierung.- Maschinelles Lernen in der mathematischen Modellierung mit Schülerinnen und Schülern.


billigbuch.ch sucht jetzt für Sie die besten Angebote ...

Loading...

Die aktuellen Verkaufspreise von 6 Onlineshops werden in Realtime abgefragt.

Sie können das gewünschte Produkt anschliessend direkt beim Anbieter Ihrer Wahl bestellen.


Feedback